If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-12x=320
We move all terms to the left:
25x^2-12x-(320)=0
a = 25; b = -12; c = -320;
Δ = b2-4ac
Δ = -122-4·25·(-320)
Δ = 32144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32144}=\sqrt{784*41}=\sqrt{784}*\sqrt{41}=28\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-28\sqrt{41}}{2*25}=\frac{12-28\sqrt{41}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+28\sqrt{41}}{2*25}=\frac{12+28\sqrt{41}}{50} $
| 1=j−972 | | –10+2q=–8q | | 7x/8=0 | | 20t/9=3 | | 3p+16=88 | | 63=9(c-90) | | 7q+11=88 | | 3n-2=1- | | 17+17p=87 | | 1n=24 | | (2x-5)+(x+15)=180 | | 2x-3/2=x+1/3 | | (2x+5)+(x+15)=180 | | 14(2t-3)-2(t+2)=10(3t-4)) | | 2x/1/3-6=0 | | 3m+8=16=m | | 3,2x-28+1,4=0,2x+2+0,4x | | 5x+6=2x-14 | | 2x+1/2x-2=1/4x+2-1/4x | | 4f+5f=63 | | -4-7x=-6x+3 | | v=50*70*50 | | 6x+2=2+7x | | x×2x=450 | | x^2+2x=2.61 | | -(x)(2+6x)=0 | | 2x+39=59 | | 9x-6=10x= | | x+(x*28/100)=100 | | x2-23=x-46 | | -a^2-18a+40=0 | | 3x+2x=5x= |